Офигеология без границ
счетчик посещений

Зако́н сохране́ния и́мпульса

(Зако́н сохране́ния количества движения)

Если векторная сумма всех внешних сил, действующих на систему, равна нулю,

Сумма внешних сил

то импульс системы сохраняется, то есть не меняется со временем.

Импульс системы

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона.

Из законов Ньютона можно показать, что при движении системы в пустом пространстве импульс сохраняется во времени, а при наличии внешнего воздействия скорость изменения импульса определяется суммой приложенных сил.

Закон сохранения импульса Закон сохранения импульса

Закон сохранения импульса

Из второго и третьего законов Ньютона вытекает закон сохранения импульса замкнутой системы.

Совокупность материальных точек (тел), рассматриваемых как единое целое, называется механической системой. Силы взаимодействия между материальными точками механической системы называются внутренними. Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними. Механическая система тел, на которую не действуют внешние силы (они взаимно уравновешиваются), называется замкнутой или изолированной. В такой системе необходимо учитывать только силы взаимодействия между входящими в нее телами (внутренние силы). Строго говоря, изолированных механических систем в природе не существует.

Рассмотрим изолированную механическую систему, состоящую из n тел с массами m1, m2, …, mn. Обозначим скорости этих тел через v1, v2, …, vn а внутреннюю силу, действующую на i-е тело со стороны k-го,- через Fik.


Складывая почленно эти уравнения и группируя силы Fik и Fki, получим:


Согласно третьему закону Ньютона Fik = -Fki, поэтому все скобки в правой части этого уравнения равны нулю, т.е.


Векторная сумма представляет собой импульс всей системы. Таким образом, или


Выражение (2.9) представляет собой закон сохранения импульса: импульс замкнутой системы тел с течением времени не изменяется.

Закон сохранения импульса справедлив не только в классической механике; он выполняется и для замкнутых систем микрочастиц, т.е. действует и в квантовой механике. Другими словами, этот закон носит универсальный характер и является фундаментальным законом природы.

Закон сохранения импульса является следствием однородности пространства: при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, т.е. не зависят от выбора положения начала координат инерциальной системы отсчета.

В классической механике из-за независимости массы от скорости импульс системы можно выразить через скорость ее центра масс.

Скорость i-й материальной точки связана с ее радиусом-вектором ri соотношением:


Следовательно,


Центром масс или центром инерции системы материальных точек называется воображаемая тоска С, положение которой характеризует распределение массы этой системы. Ее радиус-вектор равен


где масса системы.

Скорость центра масс определяется выражением:




Другими словами, импульс системы равен произведению массы системы на скорость ее центра инерции.

Подставив выражение (2.10) в (2.9), получим:


т.е. в изолированной механической системе центр масс находится в покое или движется равномерно и прямолинейно.

Если система незамкнутая (на нее действуют помимо внутренних и внешние силы), то выражение (2.9) с учетом (2.10) запишется следующим образом:


или

где ускорение центра масс.

Из (2.11) вытекает закон (теорема) движения центра масс: центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, приложенных к системе.




© 2016 "Офигеология без границ"
6 октября 2016 года

Hosted by uCoz